Transportation and Fuel Technologies Performance Analysis Methodology

1998 Update

January 1997 by:

John Maples, University of Tennessee
James Moore, Jr., TA Engineering, Inc.
Vincent Schaper, National Renewable Energy Laboratory
Philip Patterson, U.S. Department of Energy

- Technologies
- Attributes, assumptions and inputs
- Methodology
- Market penetration forecasts
- Benefits Predictions
- Analysis of Results

Technologies Addressed

- TECHNOLOGY UTILIZATION: CNG
- BIOFUELS: Ethanol
- ADVANCED AUTOMOTIVE TECHNOLOGIES:

Electric Vehicle R&D:

Fuel Cell R&D: Ethanol Reformer

Hybrid Vehicle R&D: 3X Efficiency, Gasoline

Light Duty Engine R&D: Advanced Diesel

ADVANCED HEAVY VEHICLE TECHNOLOGIES:

Classes 7 & 8

Classes 3 - 6

Classes 1 and 2 for Dieselization

MATERIALS TECHNOLOGIES:

Propulsion System Materials: Ceramics

Light-duty Vehicle Materials

- Technologies
- Attributes, assumptions and inputs
- Methodology
- Market penetration forecasts
- Benefits Predictions
- Analysis of Results

Vehicle Classes

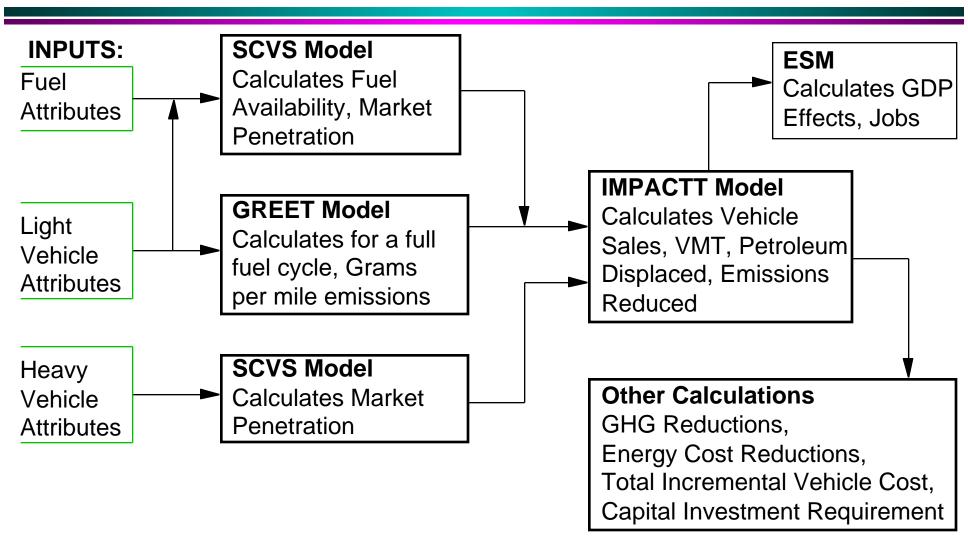
FOUR LIGHT VEHICLE CLASSES

Small cars

Large cars

Passenger trucks

Cargo trucks

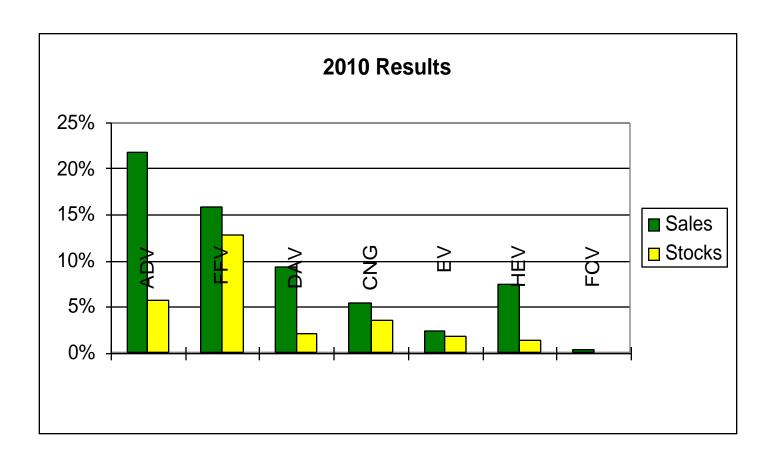

HEAVY DUTY VEHICLES

Technology Characteristics - Large Car

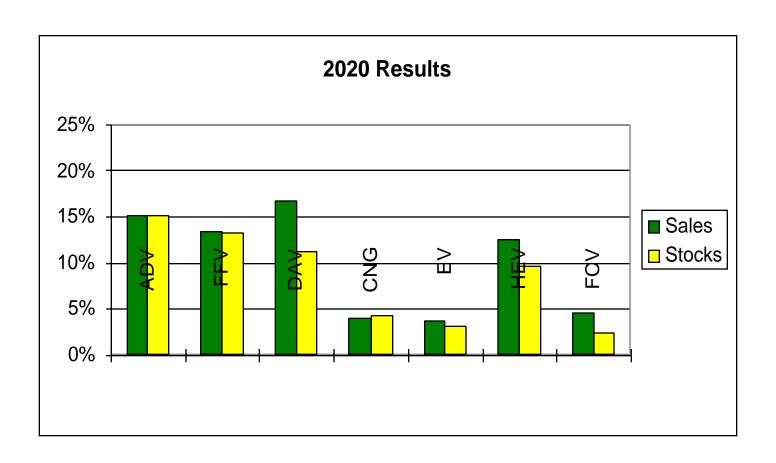
	YEAR	VEHICLE	FUEL	
TECHNOLOGY	OF	COST	ECONOMY	RELATIVE
	MATURITY	RATIO,	RATIO,	RANGE,
		\$	mpg	miles
CONVENTIONAL	N/A	\$22,000	21.9	350
ADV. DIESEL	2012	1.05	1.3	1.2
HYBRID	2015	1.2	2.5	1.0
FUEL CELL	2013	1.25	2.5	1.0
NATURAL GAS	2002	1.07	1.0	0.75
DED. ETHANOL	2005	1.0	1.08	1

- Technologies
- Attributes, assumptions and inputs
- Methodology
- Market penetration forecasts
- Benefits Predictions
- Analysis of Results

Modeling Process



- Technologies
- Attributes, assumptions and inputs
- Methodology
- Market penetration estimates
- Benefits Predictions
- Analysis of Results


Biomass Fuel Use

YEAR	2010	2020	COMMENTS
ETHANOL USE, Gal. X 10 ⁹	10.3	27.4	
SUPPLY CONSTRAINT, Gal X 10^9	12	20	1/2 USED IN BLENDS.
FUEL AVAILABILITY, % of Stations	27.6%	66.7%	

Light Vehicle Penetration

Light Vehicle Penetration

- Technologies
- Attributes, assumptions and inputs
- Methodology
- Market penetration estimates
- Estimated Benefits
- Analysis of Results

Estimated Impacts

- Energy Use: Reductions in Primary Energy and Oil Use
- Emissions: Criteria and Greenhouse
 Gas
- Economic: GDP and Jobs

Energy Displaced

TECHNOLOGY	PRIMARY OIL, mmþ/d		
	2010 2020		
Tech. Utilization	0.25	0.25	
Biofuels	0.4	1.12	
Adv. Auto Technologies	0.16	0.66	
Heavy Vehicles	0.08	0.19	
Total	0.89	2.22	
Baseline	12.95	14.31	
Percent Reduction	6.9%	15.5%	

Carbon Emission Reduction

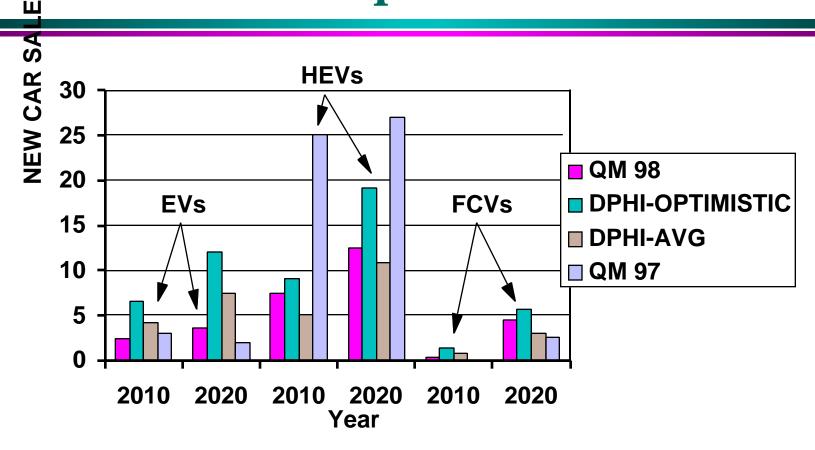
	CARBON			
TECHNOLOGY	REDUCTIONS,			
	MMTons			
	2010	2020		
Technology Utilization	2.56	2.57		
Biofuels	16.13	42.72		
Adv. Auto Technologies	3.32	23.54		
Heavy Vehicles	2.93	7.51		
Total	24.94	76.34		
Baseline	552.4	591.0		
Percent Reduction	4.5%	12.9%		
Total Baseline	24.94 552.4	76.34 591.0		

Values are in units of CO² Carbon Equivalents

Source: DOE/EIA 0573; Table 6, p.15

Economic Impacts

TECHNOLOGY	Net. Increase in GDP, \$ X 10^9		
	2010	2020	
Tech. Utilization	3.7	8.7	
Biofuels	4.4	9.6	
Adv. Auto Technologies	15.2	41.1	
Total	23.3	59.5	
Baseline	7,485.0	9,145.0	
Percent Reduction	0.31%	0.65%	


Benefit-Cost Cumulative Table (\$ Billions)

YEAR	2010	2020
BUDGET COSTS	\$2.0	\$2.0
BENEFITS	\$63.9	\$385.1
Energy Savings	\$25.6	\$191.3
Oil Security (\$/bbl)	\$1.5	\$7.6
Fuel Price Changes	\$7.2	\$12.9
Pollution Reduction	\$13.3	\$87.0
Incremental Costs	(\$104.3)	(\$350.7)
GDP Benefits	\$120.6	\$436.9
Benefit to Cost Ratio	32.0	192.6

- Technologies
- Attributes, assumptions and inputs
- Methodology
- Market penetration forecasts
- Benefits Predictions
- Analysis of Results

Market Penetration Estimate Comparisons

%

Note: Delphi Values from Argonne National Laboratory (Ng, et. al., SAE 8/96)

Credibility of Results

METHODOLOGY

Logit Model

National survey data

TECHNOLOGY CHARACTERISTICS

Peer reviewed - 3 years

MARKET PENETRATION ESTIMATES

Vehicle class considerations

Staggered, "S" curve introductions

Summary

THREE ROUNDS OF "QUALITY METRICS"
 TECHNOLOGY EVALUATIONS

Attributes are based on program goalssubjected to external review and comparison

Light vehicle methodology is complex and evolving

Results broadly consistent with historical cases: e.g. rail engines, light vehicle front wheel drive, fuel injection.

"SCENARIO" ANALYSIS IN PROGRESS

QM 98 Vehicle Attribute Life Cycle Cost Implications - 2020 (Business Autos)

TECHNOLOGY	VEHICLE PUR- CHASE COST, \$	PRESENT WORTH (13 YRS.),	PRESENT WORTH (13 YRS.),	NET PRESENT WORTH, \$	TOTAL ANNUAL OPER. COST, \$	ANNUAL OPER. COST DIFF., \$ (NOTE 1)	INCRE- MENTAL CAPITAL COST, \$ (NOTE 2)	PAYBACK PERIOD, YRS.	NPW RANK
GASOLINE ICE	30,070	3,200	3,530	36,800	2,621	0	0	N/A	2
ELECTRIC	34,581	1,393	2,916	38,890	1,678	943	(4,511)	5	4
CNG	32,175	2,292	3,212	37,679	2,143	477	(2,105)	4	3
ETHANOL	30,070	2,963	3,412	36,444	2,482	138	0	0	1

NOTE 1: COSTS THAT ARE LOWER THAN CONVENTIONAL HAVE POSITIVE SIGN

NOTE 2: COSTS THAT ARE HIGHER THAN CONVENTIONAL HAVE NEGATIVE SIGN